Evaluating ADA technologies in the Netherlands by means of demonstration projects and micro-simulation modelling

18th ICTCT Meeting, Helsinki

28 oktober 2005
Contents

• Overview of the Field Operational trail in the Netherlands
• Overview of Chauffeur Assistant (CA) systems
• Effects of CA on driving behaviour (simulator study)
• Effects of CA on capacity, traffic flow and road safety (microscopic simulation model)
• Conclusions
OVERVIEW and goals of FOT

• Research project aimed at assessing LDWA, LKS and CA
• Increase knowledge of risk and success for deployment of lateral control
 – Effect on safety and traffic flow
 – Acceptance and consensus
 – Infrastructure consequences
 – Relation with other developments
• Phase 1, field trial with LDWA and simulator study
• Assess primary and secondary impacts of CA on traffic flow and throughput in NL
What are CA systems

- Development within European Chauffeur-2
- Combines LKS and SDK (ACC)
- LKS tracks lateral position and provides active feedback
- SDK based on ACC that monitors relative speed and distance to leading vehicle
- Takes into account dynamic capabilities of other vehicles and
 - Recognises target object
 - Keeps the shortest gap
 - Warns for stationary objects
 - Monitors
Components of DECA evaluation

- **Literature Review**
- **Driving simulator study**
 - To build a test environment with a truck simulator
 - To use experienced drivers to test CA under various conditions
 - To adapt and calibrate the driver model used in micro-simulation
- **Traffic simulation model**
 - To modify the driver and vehicle models in the programme
 - To simulate various traffic conditions under different rates of CA penetration
Findings Literature review

- Large scale ADA implementation unlikely before 2020
- Development of technology is autonomous and governments need to ensure watchdog role
- High levels of ACC penetration negatively impacts traffic flow and safety
 - Interaction between ACC and non-ACC is problem
- Acceptance of ADA technology varied but growing (AICC)
Driving simulator study

- Driving simulator based on a DAF95 XF on a moving base
- ACC installed with settings of 1; 1.3 and 1.5 s and max. deceleration of 3.0 m/s²
- LKS based on info. From D-C
- 18 drivers with 5 years experience
- Within subjects design, each driver test trip and 4 trips (4 conditions with 2 ind. Variables)
- Drivers select own headway setting; leading traffic brakes unexpectedly on normal freeway
- Data incl speed, lateral pos.; steering wheel angle, time, speed of other traffic, CA state etc.
Driving simulator study (2)

- Rating scale mental effort to test acceptance
- ANOVA tests on dependant variable using volume and CA state as independent variable
- Intended lane changes not included in analysis
- Drivers instructed when to activate CA although possible to temporarily deactivate – these data also excluded
Driving simulator results

- Majority of drivers selected headways of 1.3 and 1.6 seconds
- CA active for > 84% of trip time
- Interaction between traffic volume and CA state had no effect on avg. Speeds
- Std dev of speed smaller with CA on
- More time in right lane when CA on and more so at lower volumes
- No. Of lanes changes fewer when CA is on
- No significant difference in mean lateral position (more to centre with CA on)
Driving simulator results (2)

- SDLP indicates effort to keep a straight line over time
- SDLP significantly reduced with CA on (drivers swerve less)
- The avg. SDLP with CA off higher than normal
 - Simulator environment (size, effort)
 - Dynamic behaviour of model
- Minimum TLC (risk measure) significantly higher with CA on
- One third of min. TLC less than 1s and not affected by CA state
Driving simulator results (3)

- Upward of 60% of trip at headway < 5s
- Prop. Of time spent at headways < 1s significantly higher with CA off
 - CA on has setting of more than 1s therefore prop time below due to cut in
- Average headways between 2.6 and 2.9s
- 216 Incidents with unexpected braking analysed
 - 35% change lane when lead vehicle brakes hard
 - 20% change lane when lead vehicle brakes
 - Seems than CA gives driver confidence – not necessary to change lanes as emergency manoeuvre
Driving simulator results (4)

- No significant diff. In maximum deceleration with CA on or off (higher with CA off)
- Traffic volume has no significant effect on the perceived mental effort (RSME) but CA state does
- RSME significantly lower with CA on
- Drivers rate driving task as reasonably strenuous with CA off and slight with CA on
Traffic simulation study using MIXIC

- Driver model in Mixic adapted to reveal interaction between CA and driver (lane changes braking etc)
- Two penetration scenario (0 and 100%) at two traffic volume regimes modelled (4 cases)
 - Total of 40 hours of data per case
- MIXIC is stochastic model using distributions and random numbers of driver and vehicle characteristics and produces various output
 - Traffic safety (shockwaves, conflicts, headways, TTC etc)
 - Traffic flow (speed, capacity, traffic volumes etc.)
Simulation results

• If HGV represent 10-20% of all traffic and are all equipped with CA there will be NO significant affect on traffic flow and capacity.
• Indirectly this implies no affect on traffic safety
• No of shockwaves decrease if all HGV have CA (possibly due to fewer overtaking manoeuvres)
• The spread of headways in the slow lane increases if all HGV have CA (broader range in following times)
Conclusions

- No negative traffic effects of use of CA in HGV sector on primary roads
 - No significant changes in terms of traffic flow, safety
 - Effectiveness of CA possible if the system application were extended (e.g., to passenger vehicles, extension of functionality to include stop&go)

- Drivers indicated perceived workload decreased with CA use
 - Possible compensating behaviour not investigated