Identification of Hazardous Road Locations on the basis of Floating Car Data
Agenda

- Brief intro to Hazardous Road Locations
- The Method briefly
- Floating Car Data
- Scientific background
- Data sources
- First results
- Next step
Hazardous Road Location: a definition

- Hazardous Road Location (HRL) is also known as Black Spot

A location which is more accident-prone than it it should be expected due to traffic level, road furniture and road design.
Hazardous Road Location: a definition

- Based on police-reported accidents
- 3-5 years periods normally
- Challenges:
 - Few accidents are reported
 - Biased reporting (soft road users under represented)
 - Significant black figure
 - Black figure is growing (at least in Denmark)
 - <14% of the injury accidents are reported (2007)
- HRL identification is highly uncertain
Hazardous Road Location: a definition

• Hazardous Road Location (HRL) is also known as Black Spot

A location which is more accident-prone than it should be expected due to traffic level, road furniture and road design.
The Method briefly

• In principle it is an area-based conflict study technique
• Based on Floating Car Data (FCD)
• The idea is that HRLs induce more abrupt hard decelerations than else
• Too many decelerations in one location indicates a HRL
• Small scale studies indicate that the jerk gives a more clear pattern (the derived of the deceleration)
• A Forward-looking approach (don’t wait until the accidents appear)
• Hence required for Vision Zero
In principle it is an area-based conflict study technique

Inspired by Svensson & Hydén 2006
Conflict indicator?

- Avoidance can be made in three ways:
 - Decelerate
 - Accelerate
 - Sideways
- Decelerations (and jerks) are selected:
 - Intuitively
 - Swerving data might be difficult to distinguish from quick turns (in an analytic perspective)
 - Support from literature: 72-98% of all accident avoidance activities (Horst 1984, Hydén 1987, Hantula 1994, Nygård 1999)
Floating Car Data

- Data from vehicles carrying out their ‘normal’ purpose on the road network
- Location can be detected by GPS or/and GPRS network (mobile phone network)
- Data can be collected by:
 - On board units (special developed for e.g. research)
 - Smartphones
 - Navigation units
 - Units made for fleet management
 - Etc.
Data example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table above contains example data with columns for year (yyyy), day (mm), hour (hh), speed (km/h), latitude (lat), longitude (lon), number of observations (no obs), and error terms (acc m/s² and sideways m/s²). The x and y columns represent additional parameters. The values are placeholders and should be replaced with actual data for analysis.
Decelerations and jerks (theoretical connection)

<table>
<thead>
<tr>
<th>Speed (m/s)</th>
<th>Acceleration (m/s^2)</th>
<th>Jerk (m/s^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>10</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>6</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>
Speed, Decelerations, and Jerks
Speed, Decelerations, and Jerks
Scientific background

• (Salusjärvi 1981)
• Nygård (1999)
• Svendsen et al. (2008)
• (Bagdadi & Várhelyi (2011))
Salusjärvi: on society level

- Finland 1981
- Studied the association between speed variation and accident risk
- Based on a number of Finnish experiments with speed limits in the period 1962 to 1978
- When average speed increases the speed variation increases significantly
- The higher speed variation the more serious accidents
Nygård

• Finland 1999
• To find serious conflicts on the basis of FCD
• 70 drivers
• Each drove a trip of 50 km with GPS registration and a trained conflict observer in the car
• Compared the size of decelerations and jerks with the observations of conflicts
• Found that jerks gave more clear results than decelerations
• Found that serious conflicts resulted in jerks that differed significant from jerks in case of voluntary braking
Svendsen et al.

- Denmark 2008
- Data from the Danish ISA trial Pay As You Speed
- Tested the HRL identification on a small scale
- Supported Nygård’s jerk-based approach
- 94 drivers, 1,097 jerks, and found 12 locations with \(\geq 4 \) jerks
- Used (relatively) low frequency data (1 Hz)
- He also found that the frequency of data affected the threshold values markedly
(Bagdadi & Várhelyi)

• Sweden 2011
• Based on FCD from the ISA trial in Lund (1999-2001)
• Data from 166 cars included
• Questionnaire data (among others about accident data)
• Found a connection between the number and seriousness of jerks and the accident risk
• Connections from jerks to risk, but no connection to locations!
Data sources (and results)

- Pay As You Speed (PAYS)
- ITS Platform
- TAC Safecar project (Melbourne)
Pay As You Speed (PAYS)

- North Jutland
- Intelligent Speed Adaptation
- Informative, warning and recording ISA + incentives (up to 30% discount on insurance rate)
- Field trial April 2006 to January 2009
 - 153 18 – 70-years-old car owners
 - 12 to 32 months
 - To test if economic incentive in combination with ISA can reduce the participating drivers’ speeding
Total FCD from PAYS

- 153 vehicles
- Distance driven: 2.8 million km
- 380 million records
- 1 Hz
- No acceleration data
Individual threshold

- Each driver had an individual threshold for jerks
- Jerks $>|$ the threshold were supposed to be included
- 93 drivers included
- 9,500 hours
- 1,097 jerks included
- 1 jerk/8.40 hours

One driver: distribution of jerks and threshold level
ITS Platform

- North Jutland
- 2010-2013
- On board Unit, Backend Server and a no. of applications
- 400 cars
- Driving for 1 – 1.5 years
- Is scheduled to continue on commercial basis after 2013
FCD from ITS Platform

- 10 Hz
- 500 cars
- Acceleration data included
- 8-12 billion records on accelerations are expected
- Simplification will be used
ITS Platform FCD: first results

- Challenge: long distance driven/serious jerk = very few jerks so far
- 6 cars in 3 months
- 2 million observations with 10 accelerations each
- 38,000 km driven
- Jerk types:
 - Jerk based on speeds
 - Jerk per 0.1 sec.
 - $|J_{\text{max}} - J_{\text{min}}|$
Examples of reliable jerks

- Significant jerk before AND after a deceleration
- Delays compared to change in speed
Examples of reliable jerks

- Significant jerk before AND after a deceleration
- Delays compared to change in speed
Examples of reliable jerks

- Significant jerk before AND after a deceleration
- Delays compared to change in speed
Pitfalls with FCD

- Speed bump
Pitfalls with FCD

- Bad GPS data
- City Canyons
Pitfalls with FCD

- Speed bumps again
Identification procedure (November 2012)

- Significant differences $|\text{Jerk}_{\text{max}} - \text{Jerk}_{\text{min}}|$
 - Unique size or individual size?

- Explicit reduction in speed
 - To avoid effects from vertical accelerations
 - Bumps
 - Railway crossings
 - Bad road surface

- Speed before jerk > a threshold (4-5 m/s – has to be defined)
 - Start-up and stop activities can cause significant jerks
Next step

• **Late 2012:**
 • 6 months of driving from +50 cars
 • Comparison of decelerations and jerks
 • Finding first HRL – hopefully 😊

• **Mid-2013:**
 • Full-scale study
 • Refind results
 • HRL identification
 • Reporting
Summary

- Identification of HRL on the basis of FCD
- Jerk seems to be the most reliable approach
- Also info about the speed and change in speed is required
- Few reliable jerks found so far
- Large-scale data study will be initiated in late November 2012
Aalborg University and traffic safety research

Two research projects with different approaches to find HRLs:
• Based on identification of jerks from FCD
• Based on road characteristics
Thank You

Niels Agerholm
Traffic Research Group
Aalborg University
+45 61 78 04 55
agerholm@plan.aau.dk