Comparison of two nearness-to-collision surrogate indicators at a signalized intersection in Minsk using Extreme Value Theory

Attila Borsos, University of Győr, Hungary
Haneen Farah, TU Delft, Netherlands
Aliaksei Laureshyn, Lund University, Sweden

31st ICTCT Workshop, Porto, Portugal
October 25th – 26th 2018

Content
• Problem statement
• Literature review
 – Surrogate measures of safety
 – Application of EVT
• TTC vs. T2
• Application of BM and POT
• Discussion
• Further steps

Safety Hierarchy
• Shape can be different
• Heterogeneity in the frequency-severity relationship

What interactions are considered?
• Low-severity interactions should be utilized
• Svensson limited the events to interactions with a collision course
• Possible extensions e.g. including crossing course interactions, PSMS
TTC vs. T2
- Time until a collision
- Assumes unchanged speed and trajectory
- Acceleration/deceleration not taken into account
- Requires a collision course
- Ignores many potential conflicts
- Continuous (min value)

Example in T-Analyst

Example in T-Analyst

TTCmin = 2.16 s (collision course) No collision course (No TTC value)
T2min = 1.76 s (crossing course) PET= 3.3 s (first vehicle leaves conflict p.)

EVT and SMS
- First study by Tarko (2006)
- Studies applied BM and/or POT
- Contradicting results on which one is better
- Mostly used TTC and PET
- Mostly univariate, just a few bivariate (TTC&Speed, TTC&Time headway)
- Linking EVT with accident data
Research gap/question

• Comparison of surrogate indicators using EVT
• Esp. collision course vs. crossing course
• What can we learn from applying EVT using indicators describing collision course and crossing course interactions at signalized intersections for vehicle-vehicle interactions?

Case

• Two-phase signalized intersection in Minsk
• 32 PDO crashes (5 straight-left turn) 1999-2009
• Recordings for 3 days (6AM – 9PM)
• 2749 interactions
• 1616 - subset of straight – left turning
• Subsets for indicators
 – TTC: n=194
 – T2: n=792

Extreme Value Theory

Block maxima (GEV) Peak over Threshold (GPD)

Block Maxima

$$
G(z) = \exp\left(1 + \left(\frac{z - \xi}{\sigma}\right)^\gamma\right).
$$

Generalized Extreme Value (GEV) distribution, where location parameter (ξ), scale parameter (σ), shape parameter (γ)

3 cases:
• If $\gamma > 0$, Fréchet distribution, heavy right tail and the right endpoint is infinite;
• if $\gamma < 0$, Weibull distribution, which has a finite endpoint (σ / γ);
• if $\gamma=0$, Gumbel distribution, light right tail
Peak over Threshold

\[H(x) = 1 - \left[1 + \left(\frac{x - u}{\sigma u} \right)^{-\frac{1}{\xi}} \right] \]

- threshold \((u)\) excesses have a Generalized Pareto Distribution (GPD) with two parameters, the shape \(\xi\) and the scale \(\sigma\) parameters
- similar to BM the shape parameter \(\xi\) determines the behavior of the GPD

Block Maxima (results)

- Minima (negated values), block-interaction
- Selection of near-crashes – “sub sampling of maxima”
- But what is a near-crash?
- Steps:
 - 3.5 s as an initial value for both TTC and T2
 - Several threshold values tested

Block Maxima (<3.5s)

- TTC (n=31)
 - \(\xi = 1.0987\) (Fréchet)
 - \(Pr(TTC=0) = 0.0733\) (!)
- T2 (n=443)
 - \(\beta = -0.1294\) (Weibull)
 - \(Pr(T2=0)=0.0016\)

Block Maxima (different thresholds)

- 3.5 s \(\to\) 5 s (see plot)
 - TTC (n=31 \(\to\) 100)
 - \(\xi = 1.0987 \to 0.0873\) (Fréchet \(\to\) Gumbel)
 - \(Pr(TTC=0) 0.0733 \to 0.0040\) (return periods 14 \(\to\) 247)
- 3.5 s \(\to\) 2 s (see plot)
 - T2 (n=443 \(\to\) 130)
 - \(\beta = -0.1294 \to 0.1664\) (Weibull \(\to\) Gumbel)
 - \(Pr(T2=0)=0.0016 \to 0.0098\) (return periods 596 \(\to\) 101)
Peak over Threshold (results)

• What threshold should we use?

Peak over Threshold (results) (TTC<4s, T2<2s)

• Pr(TTC=0) = 0.00017 (return period 5,884)
• Pr(T2=0) = 0.00055 (return period 1,807)

Summary of results

• POT seems to give more reasonable results
• Model fits for T2 are more reliable

Discussion

• Sample size issues with TTC (also because of the type of interaction itself)
• Trade-off between a good model fit and reasonable threshold values
• Motion prediction
• How to validate?
Further steps

- Bivariate models using e.g. speed, extended Delta-V
- Using EVT to differentiate severity levels

Thank you!