Cyclists’ safety during interactions with AVs: A combined microscopic simulation and SSAM analysis

1. OBJECTIVES

- Define and simulate cyclists’ behavioural patterns.
- Evaluate AV-bicycle conflicts in a traffic simulation scenario through surrogate safety measures.

2. METHODOLOGY

a. Microsimulation via PTV Vissim software
 - Three defined behavioral patterns of cyclists: cautious, normal, and aggressive.
 - Two AV behaviours: cautious and normal.
 - Shared roads; uncontrolled T-intersection with low traffic volume (600 veh/h).
 - 24 model runs, 15 hours/run, 360 h of simulation.

b. Safety analysis via SSAM software
 - Safety indicators: TTC, PET, MaxSpeed, DeltaSpeed and MaxDeltaV were analyzed.

3. RESULTS

a. Distributions - Typical conflicts

 ![Chart showing conflict rates](image)

 - **CONFLICTS RATES**
 - Vehicle types involved in conflicts
 - Conflict settings: 600 m/s²
 - TTC value of typical conflicts

 ![Figure 4. Behavioural distributions of typical conflicts](image)

 - **Statistical significance of mean SSM**
 - TTC (s) PET (s) MaxS (m/s) DeltaS (m/s) DR MaxDeltaV (m/s)
 - Rear End (n=44) 0.91 0.84 4.48 1.88 0.50 2.5
 - Crossing (n=50) 0.93 0.72 10.88 11.74 0.43 10.44

 ![Figure 5. TTC values of typical conflicts](image)

b. Surrogate Safety Measures

 - **Modified Swedish traffic conflict technique**
 - Modified conflict risk diagram for motorcycle-car conflicts

 ![Figure 6. Severity levels comparison](image)

3. CONCLUSIONS

- The importance of the parameters: following and lateral parameters, and the priority parameters (gap acceptance and clearance).
- Rear-end conflict consists of the highest occurring conflict.
- The less involved behaviour of bikes is normal, while that of AVs is cautious.
- 50% of interactions have no risk while the remaining 50% are split in different levels of risk.
- Results cannot be generalized (only simulation based).
- A conflict diagram needs to be constructed to better understand the severity of conflicts between vehicles (incl. AVs) and bicycles.

ACKNOWLEDGEMENTS

This research was made possible by the Stipendium Hungaricum Program at Széchenyi István University and PTV Group.