Background:
Technological innovation in the mobility and transport sphere is still strongly focussed on vehicle or infrastructure based systems. In view of ITS aimed at vulnerable road users technology is mainly addressing the comfort aspect (i.e. routing and traffic realtime information in public transport), while the general dimension of mobility demand and usability in public space remains a rather untouched topic in many European regions. In a row of consecutive Austrian research projects every element in the chain of intermodal routes has been addressed, starting from the user centred features of public transport stops in both urban and rural transport systems, to the planning tasks involved in providing demand-driven public transport. The current iteration focusses on establishing a typology of intermodal mobility nodes including a differentiated view of the potential users of a multi-modal transport system.

Aim:
While previous steps in the development of a dynamic transport management in urban and rural areas based on a complex accessibility model have focussed on the intermediate aspects of accessibility and usability of transport stops and multimodality in general, here the main goal is to interlace recent findings on acceptability and user demand with current developments in systemic traffic planning.

Methods:
In the early stages of the ongoing project a user centred design approach involving all relevant stakeholders will ensure that potential users, planners and system relevant public actors are activated early on in the development process. Potential end-users from different mobility related backgrounds, with varying needs, living areas and access demands will be involved in course of focus group discussions. Expert workshops with planners, engineers, responsible actors on regional and federal level will ensure that the final planning tool fits professional demands.

Expected results
As a result, a typology of intermodal mobility nodes will be established based on aspects such as regionality, type of usage, user demand, seasonality and the information demand at these traffic connection points. Based on user input from potential end-users, mobility as a service (MaaS) solutions will be proposed and needed functions will be sourced to the later development stages of the project. These findings and the outcomes of the expert workshops are the basis for the establishing of a dynamic traffic management.

Conclusions:
While data sources for mobility demand assessment are available today, there remains a lack in knowledge on which factors influence uptake of certain transport services on the intersections of rural, suburban and urban areas. Provided public transport options are often neglected and hence terminated without further research into cause and effect. Here the ongoing research projects Mobility Integrator steps in to provide the basis for the intermodal mobility node of the future.