Automated Road Safety Analysis and Data Collection Using Video Sensors

Tarek Sayed University of British Columbia

Acknowledgement

- Nicolas Saunier (École Polytechnique de Montréal)
- Karim Ismail (Carleton University)
- Mohamed Zaki (UBC)
- Jarvis Autey (UBC)
- Greg Mori (SFU)

Engineering Approaches to Road Safety Management

- Reactive approach
 - Making improvements to existing unsafe road locations based on accident history
- Proactive approach
 - Prevent unsafe road conditions from occurring by including road safety as a priority at the planning/design and early operation stages
 - The earlier that road safety is considered, the more cost-effectively it can be accommodated

Motivation

- Traditional road safety analysis is a reactive approach, based on historical collision data
 - There are well-recognized availability and quality problems associated with collision data
 - Less complete understanding of the complex interaction of collision factors and how safety measures work _____
 - A more proactive approach is needed which provides a better understanding of collision occurrence

Traffic Conflicts (near-misses)

- Shortcomings
 - Cost of data collection
 - Issues related to the reliability and accuracy of human observers

A Modular System for Vision-based Automated Road Safety Analysis

(Saunier and Sayed, 2006)

Video Analysis

Real-world Coordinates Recovery

(Ismail, Sayed and Saunier, 2009)

Recovery of Real-world Coordinates

Calgary

Edmonton

Recovery of Real-world Coordinates...2

Kuwait City

Video Analysis

Example of Motion Patterns (Calgary)

Video Analysis

Road User Classification

Oakland, CA <u>Chi</u>natown (Ismail, Sayed and Saunier, 2009)

Video Analysis

Road User Classification

Ismail, Sayed and Saunier (2010)

Video Analysis

Validation

Vancouver – Fire Works

Vancouver – Fire Works (with Greg Mori – SFU)

Frame 10002

"Max-Margin Offline Pedestrian Tracking with Multiple Cues" -Canadian Conference on Computer and Robot Vision (CRV 2010)

Objective Conflict Indicator

Vehicle-vehicle Interactions

 U_x is current track H_{xy} is extrapolation hypothesis CP_x is collision point

(Saunier and Sayed, 2008)

Results (Old Training Video)

Results

(Ismail, Sayed and Saunier, 2010)

Automated Before-and-After Safety Projects

- Before/After Evaluation of Pedestrian Scramble (California)
- 2. Before/After Analysis for the Treatment at Yellowhead / Victoria Trail

Before-and-After Conflict Indicators

Ismail, Sayed and Saunier (2010)

Motion Patterns

Motion Patterns

Conflict Examples (Before Data)

After Analysis

Conflict Examples (After Data)

CONFLCIT TYPE	BEFORE TREATMENT	AFTER TREATMENT	B/A RATIO
Merging	1.3151e-004	4.5799e-006	28.71
	1.1399e-004	4.1768e-006	27.29
	9.1363e-005	3.4317e-006	26.62
Rear-end	2.8288e-005	2.6896e-005	1.05
	2.8716e-005	2.3093e-005	1.24
	2.4232e-005	1.6991e-005	1.43
All Types	9.1685e-005	7.6311e-006	12.01
	8.1091e-005	6.7632e-006	11.99
	6.5463e-005	5.2856e-006	12.39

Penticton, BC - Before/After Analysis of Right-turn Treatment

Evaluating the Reliability of Red-Light Cameras

Evaluating the Reliability of Speed Cameras

- A new approach to road safety analysis
 - Proactive, generic and low cost approach
 - Provides better understanding of driver behavior especially collision avoidance mechanisms
 - Diagnostic approach
 - Overcomes the problems with the traffic conflict technique (high cost and reliability of observers)
 - It is time to take safety analysis in a new direction

Ongoing Studies / Future Work

- Automatic detection of traffic violation events (TRB, 2011)
- Several B/A studies using conflicts
- Aggregation of conflict indicators (TRB, 2011)
- Safety diagnosis of collision prone locations (roundabout)
- Conflict/Collision models

