Unplanned Presentation

Andrew P. Tarko
Purdue University
West Lafayette, Indiana

Email: tarko@purdue.edu

SURROGATE EVENT VS CRASH

Continuum of Traffic Events

(based on C. Hyden's concept)

Probability of Crash given a Risky Event (Severity Scale)

 $F_E(D < D_0)$ = frequency of risky events (including crashes)

 $F_C(D<0)$ = frequency of crashes

P(C|E) = probability of a crash given a risky event

$$P(C|E) = F_C/F_E$$

$$F_C = P(C|E) \cdot F_F$$

$$F_C(X) = P(C|E,X) \cdot F_E(X)$$

From Pyramid to Distribution of Events

Pareto Model P(C|E,X)

Pareto Model P(C|E,X)

EXAMPLE - ROAD DEPARTURE

Neardeparture Event

(Lateral Distance)

Alternative Measures of Event Severity Time to Departure TTD1 (Constant Speed, (Constant Rate of

Pareto Model P(C|E)

$$f(s) = \begin{cases} \frac{1}{\sigma} \cdot \left(1 + k \cdot \frac{s - \theta}{\sigma}\right)^{-1 - \frac{1}{k}} & \text{for } (k > 0 \text{ and } \theta < s) \text{ or } (k < 0 \text{ and } \theta < s < -\sigma/k), \\ \frac{1}{\sigma} \cdot e^{-\frac{s - \theta}{\sigma}} & \text{for } k = 0 \text{ and } \theta < s. \end{cases}$$

where:

shoulder encroachment depth $s = D_0 - D$, $D_0 = 4$ ft, shape parameter k (to be estimated for conditions X), scale parameter σ (to be estimated for conditions X), threshold (location) parameter $\theta = 0$.

$$P(C|E) = F(S>D_0) = 1 - F(D_0)$$

Estimated Number of Departures

77 trips by four subjects, total 2,150 miles travelled

Severity Measure S	LD	TTD1	TTD2	
Threshold D ₀	4 ft	1.75 s	3.8 s	
Number of risky events	2,662	2,319	2,786	
Shape parameter	0.152	-0.154	-0.260	
	(0.098, 0.206)	(-0.212, -0.095)	(-0.293, -0.227)	
Scale parameter	0.374	0.407	1.040	
	(0.350, 0.400)	(0.379, 0.437)	(0.990, 1.092)	
Estimated risk of departure	0.0018	0.00094	0.000026	
	(0.0010, 0.0027)	(0.00017, 0.0020)	(0.0000, 0.00011)	
Estimated number of departures	4.79	2.17	0.07	
	(2.81, 7.42)	(0.40, 4.63)	(0.00, 0.29)	
Number of departures	4	4	4	

Fit to Data - LD-based Model

Results by Subject LD-based Models

Subject	385	756	219	028
No. of sessions	19	20	19	19
Miles	522.5	550	522.5	522.5
Near-departures	605	640	1013	404
Shape parameter	0.051	0.1874	0.0174	0.151
Scale parameter	0.323	0.4287	0.5026	0.232
Risk of departure P(C E)	1.30E-04	4.60E-03	6.54E-04	3.08E-04
Near-departure rate F _F (1/1000 miles)	1158	1164	1939	773
Expected departure rate F _C (1/1000 miles)	0.15	5.21	1.24	0.24
5 th percentile	0.00	2.06	0.20	0.00
95 th percentile	0.55	9.08	3.02	0.81

SURROGATE EVENTS IN SAFETY MODELING

Hybrid Approach to Modeling Collisions

LIDAR SYSTEM

LiDAR Scanner

(adopted from wikipedia: http://en.wikipedia.org/wiki/LIDAR)

Purdue Traffic Mobile Lab

Future Work

- Build a LiDAR system
 - Hardware integration
 - Data acquisition, reduction, and storage handling
 - System testing and evaluation
- Application software
- Research on safety measurement via surrogates

