

Content

- Traffic safety assessment
- · Background site-based video observations in real traffic
- Expert meetings Automated video analysis
 - Lund 2006
 - · Soesterberg, 2010
- Examples of behavioural studies (Signalised turbo roundabouts, Level railway crossings, PROLOGUE)
- Examples of automated video analysis
 - Lund
 - TNO

2 TNOVanderHorst_2010_11_16_Soesterberg

Long-term video observations

- Observation of 4 blackspots in 2-yr period
 - Pijnacker (T-junction) + Delft (3 signalized intersections)
- · Rough data: 8 years of video material
- Selection: Collisions (# police-reported?) whole period
 Incidents when observed
 Conflicts (analyses ala 'DOCTOR' method) one day
- Methodology to determine driver behavior in the pre-crash phase
- Insight in the chain of elements of human behavior that either is resulting in, or avoiding an accident

6 TNOVanderHorst_2010_11_16_Soesterberg

Video recordings

- · At each location 1 or 2 CCD cameras
- PC + 3 hard discs (750 Gb) (> 2 weeks, 2 cameras)
- Separate jpeg pictures in a time-directory structure (date, hour, min, 60x 12.5 fields)
- Motion detection on the spot + specific areas excluded)

Video analysis

- Manual selection of collisions by specially developed fast Windows viewer (at high speed still good interpretable images)
- Windows application for quantitative analysis (semi-automatic), (basically the same as 30 years ago) of collisions and conflicts (speed, distance, TTC, PET, etc.)
- Still urgent need for automated procedure!!

8 TNOVanderHorst_2010_11_16_Soesterberg

Analysis

- VIDARTS (VIDeo-based Analysis of Road Traffic Scenes)
- · collisions and conflicts

Transformation from video to street Semi-automatic procedure

-> V, DIST, TTC, TTCmin, PET, etc.

 DOCTOR (Dutch Objective Conflict Technique for Operation and Research)

Overall severity (scale 1-5)

- probability of collision (TTC or PET)
- · extent of consequences if collision had occurred

TNOVanderHorst_2010_11_16_Soesterberg

16 November 2010

Conclusions (1)

- Traffic conflicts and analysing deviant behaviour together with road scene analyses give good insight in potential traffic safety problems at intersections. Good resemblance with results analysis of collisions from video.
- Remarkably, frequently, another road user (in)directly involved in pre-crash process
- Observing and scoring conflicts according to DOCTOR method from video feasible
- Time-related measures such as TTC and PET promising surrogate safety measures for predicting accident risks by microscopic traffic simulation models (EU proposal SIMPAC)

TNOVanderHorst_2010_11_16_Soesterberg

Conclusions (2)

- We do not have to wait for accidents for improving road environment and traffic management
- Systematic observation of behaviour already gives you lots of clues for improving road safety at intersections
- Video observations rich source of information for natural traffic behaviour of road users (interactions mutually or in relation with road environment), in future additional to integral approach? -> Naturalistic driving studies (also on-site)

TNOVanderHorst_2010_11_16_Soesterberg

16 November 2010

Background Expert meeting Soesterberg

- Development of semi-automatic video analysis technique (1978-1984)
- Demonstration bicycle routes in The Hague and Tilburg (1979-1980)
 - Evaluation of several intersection solutions (placement of speed humps,
- Development of time-related measures TTC, TTI, TTS, etc.)
- ICTCT Conflict studies
 - Malmö Calibration Study (1983)
 - Trautenfels (1985)
- Strong need for joint effort for developing objective road user behaviour analysis tools
 - CARUSO (Cognitive vision for Assessment of Road Users Safety and Operational efficiency), EU-proposal 2003
 - Joint Workshop Lund 2006 (27 participants)

TNOVanderHorst_2010_11_16_Soesterberg

Expert meeting Soesterberg 15-16 November 2010

- Aim the expert meeting on automated video analysis of road traffic scenes (Soesterberg, 15-16 November 2010):
 - Exchange newest developments in automated video analysis techniques and applications and discuss future plans and activities
- 23 participants, 10 countries (Sweden, Netherlands, Finland, Denmark, Israel, Spain, Germany, Canada, USA, Belgium)
- · Applications:
 - · Motorway traffic (same direction, etc.) TNO
 - · Intersections: Lund, UBC, TNO
 - · Pedestrian crossings: Lund, UBC
- · Future developments:
 - · Data fusion with Stereo Radar, Laser scanner, Lidar
 - Observations from helicopter (Helsinki, TUD-NL)
 - Site-based and in-car observations combined (naturalistic driving studies)

TNOVanderHorst_2010_11_16_Soesterberg

Evaluation of signalised turbo roundabouts

 Province of Zuid-Holland has two operational: Doenkadeplein and Tolhekplein

- Aim of study:
 Better insight in functioning with respect to traffic flow and road users' behaviour and experience
 - (Traffic flow)
 - Road Scene Analyses
 - Behavioural observations by video
 - Road user surveys

21 TNOVanderHorst_2010_11_16_Soesterberg

Video behavioural observations

- 15-19 oktober 2007
- Three video-camera's each, 1 looking backwards filtering lanes, 1 central area, 1 zoomed in furthest away area
- Selection:
 - Rush hours: 07:30-9:30,16:30-18:30
 - Non-rush hours: 09:30-16:30
 - Total 11 hours each
- · Error manoeuvres and deviant behaviour

	Number	% total	Non/Rush	Fraction left turn
Doenkadeplein	173	0.55	1.9	80.4%
Tolhekplein	153	1.07	3.5	52.3%

27 TNOVanderHorst_2010_11_16_Soesterberg

16 November 2010

Video behavioural observations

• Error manoeuvres by type

	Left turn inside-out	U-turn	Complex	SO-LT/LT-SO/SO-RT	Filtering	Other
Doenkadeplein	80	37	32	8	5	11
	46.2%	21.4%	18.5%	4.6%	2.9%	6.4%
Tolhekplein	36	27	18	42	16	16
	23.2%	17.4%	11.6%	27.2%	10.3%	10.3%

TNOVanderHorst_2010_11_16_Soesterberg

Conclusions behavioural observations

- Route choice
 - Tolhekplein more problematic than Doenkadeplein
 - (before roundabout 10 vs. 3% error manoeuvres, At roundabout 22 vs. 5%)
- · Path choice
 - · Left turn manoeuvre most problematic
 - Tolhekplein -> ghost riding, directly turning left at 1st light
 - Both roundabouts -> turning left at 2nd light
 - U-turns
- Conflicts
 - Number limited

TNOVanderHorst_2010_11_16_Soesterberg

16 November 2010

Conclusions signalised turbo roundabouts

- Traffic flow much better compared with conventional signalised intersection
- Road Scene Analyses
 - Route signing before roundabout okay, on and after roundabout missing -> hesitant/uncertain behaviour?
- · Behavioural observations
 - Route choice: issue at Tolhekplein (temporary?)
 - Path choice: Left turn manoeuvre problematic (ghost riding 1st light Tolhekplein, left turn at 2nd licht, U-turns)
 - · Conflicts and running red: limited
- Road user survey
 - After habituation reasonably positive (truck drivers more, incidental users less positive)
 - · Mistakes/errors (when new), also by others

2 TNOVanderHorst_2010_11_16_Soesterberg

Recommendations

- Approaching and negotiating signalised turbo roundabout appears to be a complicated manoeuvre, especially for the less familiar road user and result in errors/mistakes
- Several detailed improvements possible, but these will not exclude all errors
- Only consider application if traffic capacity for heavy crossing flows requires so

3 TNOVanderHorst_2010_11_16_Soesterberg

• PROLOGUE in-car plus site-based, see separate presentation, Jasper Pauwelussen

Conclusions

- A lot of progress has been made, several excellent examples of new applications (datafusion, sit-based + in-car, multisensor, etc.)
- But still a lot of pre-knowledge has to be put into site-based observation and analysis
- Strong need for further cooperation for both developers (computer scientists) and users (road designers, traffic engineers, and behavioural scientists)
- We will explore further possibilities for this:
 - ICTCT
 - EU-proposal
 - COST action

TNOVanderHorst_2010_11_16_Soesterberg

